30

 PAGE 23

 PAGE 23

 PAGE 23

 PAGE 23

 PAGE 23
CLPCI CORE

CLPCI CORE

Preliminary Design Document
Ramaprasad K V

Last Modified: March 29, 1999
Revision History

DATE

PERSON

REVISION

MODIFICATION

Jan 29 1999

Ramaprasad K V
1.0

Created

Feb 11 1999

Ramaprasad K V
1.1

Changes for PCI v2.2

Mar1 1999
Ramaprasad K V
1.2

Name change

TABLE OF CONTENTS
31
Introduction

2
Design Description
4
2.1
Block Diagram
4
2.2
Pin description
4
2.3
Functional Blocks
9
2.3.1
Initiator command decoder
9
2.3.2
Initiator Engine
10
2.3.3
Target command decoder
13
2.3.4
Target address controller
14
2.3.5
Target engine
15
2.3.6
Parity generation and checking block
16
2.3.7
FIFO block
17
2.3.8
Configuration Header Space Registers
19
3
AC and DC Specifications
23
3.1
Recommended Operating Conditions
23
3.2
DC Specifications
23
3.3
Timing Specifications
23
3.4
Power Consumption
23
4
Programming Operations
23
5
Test
23
5.1
Requirements
23
5.2
Verification Plan
23
5.2.1
Initiator mode tests
23
5.2.2
Data transfer tests
26
5.2.3
Target mode tests
26
5.2.4
Error conditions
29
6
I/O Assignment
29
7
Internal Technical Analysis
29
8
Risks And Counter Measures
29
9
Manufacturing Requirements
29
10
Tools Used
29
11
Vendor Parameters
29
12
Appendix A:
29

1 Introduction

CLPCI is a synthesizable core that could be used with an application that needs to be interfaced with PCI bus. CLPCI gives enables the application to work both in initiator as well as in target mode. The following list gives the feature set of CLPCI.

· Supports PCI specification 2.1 protocol at 33 /66 MHz

· 32/64 bit address & data paths

· Modular, customizable implementation

· Works both in initiator and target modes

· Maps either to memory or I/O space

· Generation of parity and detection/reporting of parity errors

· Supports all mandatory registers as per PCI spec v2.1

· Supports burst mode operation

· No extra wait states insertion

· Generic application side interface

· Supports master abort

· Supports target abort, retry & disconnect sequences

· JTAG support

· Interrupt generation

· Bus parking capability

· Latency timer

· Decodes fast back to back transactions in the target mode

· Recognizes special cycles in target mode

· Handles address and data stepping in target mode

The following features are not supported by CLPCI

· Subtractive decoding

· Special cycle generation in initiator mode

· Configuration cycles generation in initiator mode

· Memory read line and Memory read multiple commands

· Memory write and invalidate command

· Locking

2 Design Description

2.1 Block Diagram

2.2 Pin description

The following table gives the I/O description of CLPCI core. All active low signals have names ending in _n. Tri-state signals are indicates as (ts). Sustained tri-state signals are indicated as (sts). Inputs to the core have names starting with I_. Outputs of the core have names starting from O_. Bi-directional signals start with prefix IO_. Signals that have relevance only in the initiator mode have a string “itr” in their names. Signals that have meaning only in target mode have a string “tgt” in their names.

Table 1: PCI side I/Os

Name
Type
Description

I_CLK
I
This is the PCI clock. All activities on the PCI bus are synchronized to this clock. The frequency of this clock may be anywhere between 0 MHz and 33 MHz in 33 MHz systems and anywhere between 0 MHz and 66 MHz in 66 MHz systems.

I_RST_n
I
When asserted, all the PCI configuration registers and state machines and the output drivers are brought to an initialized state. This signal can be asserted asynchronous to the clock signal.

IO_AD[31:0]
I/O(ts)
Lower four bytes of multiplexed address/data bus. Contains the start address for the transaction in the address phase and the data in the data phase of a PCI transfer.

IO_AD[63:32]
I/O(ts)
Upper four bytes of multiplexed address/data bus. This has meaning only when the core is operating in 64-bit mode.

IO_CBE_n[3:0]
I/O(ts)
These lines contain the PCI command during the address phase and the Byte enables during the data phase.

IO_CBE_n[7:4]
I/O(ts)
This contains the upper four-byte enables when the 64-bit transfers are being performed.

O_REQ_n
O
When CLPCI wishes to gain control over the PCI bus, this signal is asserted.

I_GNT_n
I
When this signal is asserted, it indicates that the request from the CLPCI for control of PCI bus has been granted and it can take control over the bus after the current transactions on the bus are completed.

I_IDSEL
I
When asserted, indicates to CLPCI that it is the current target for a configuration cycle.

I_M66EN
I
When asserted, indicates that the PCI bus is 66 MHz capable.

IO_PAR
I/O(ts)
Even parity across IO_AD[31:0] and IO_CBE_N[3:0]. Parity is always valid for the transfer that occurred in the previous clock cycle.

IO_PAR64
I/O(t/s)
Even parity across IO_AD[63:32] and IO_CBE_N[7:4]. This signal has meaning only with 64 bit transfers. Parity is always valid for the transfer that occurred in the previous clock cycle.

IO_FRAME_n
I/O(sts)
CLPCI asserts this signal when it is acting as an initiator. Assertion indicates the beginning of a transfer. This signal is de-asserted when only one more data phase remains in the transfer. When CLPCI is given grant of the bus, it polls the bus for idle condition (IO_FRAME_n and IO_IRDY_n being de-asserted) and then asserts the IO_FRAME_n.

IO_REQ64_n
I/O
This signal is asserted by a 64-bit master to indicate it would like to perform 64-bit data transfers. This signal has the same timing and duration as IO_FRAME_n signal.

IO_IRDY_n
I/O(sts)
CLPCI drives this signal only when acting as an initiator. During a write transfer, the assertion of this signal indicates that the initiator is driving valid data to the bus. During a read, it indicates that the initiator is ready to accept the data from the target. A data phase is completed on any clock when both IO_IRDY_n and IO_TRDY_n are asserted.

IO_TRDY_n
I/O(sts)
CLPCI drives this signal only when acting as a target. It indicates that CLPCI is ready to complete the current data transfer as a target. During a read, it indicates that CLPCI is driving valid data onto the IO_AD bus. During write cycles it means that it is ready to accept data to be written into it. A data phase is completed on any clock when both IO_IRDY_n and IO_TRDY_n are asserted.

IO_STOP_n
I/O(sts)
CLPCI drives this signal when acting as a target to request for termination the transaction going on. When acting as an initiator, it monitors this signal to perform an abort sequence.

IO_DEVSEL_n
I/O(sts)
When CLPCI is acting as a target, it drives this signal when it decodes the address and finds a match. When acting as an in initiator, it monitors this signal and if no target has claimed the transaction it has started within six clock cycles a master abort sequence is performed.

IO_ACK64_n
I/O
This is asserted by a target which can support 64-bit transfers in response to IO_REQ64_n. This signal has the same timing and duration as IO_DEVSEL_n. In the absence of IO_REQ64_n, this signal stays de-asserted.

IO_PERR_n
I/O(sts)
Indicates a data parity error detected condition except for special cycles. This is driven by the initiator when read cycles are performed and by the target when write cycles are being performed.

O_SERR_n
I/O
Indicates address parity errors or data parity errors on special cycles (not supported by CLPCI). Any other serious system error can be passed off to the PCI bus on through this indication.

O_INTA_n
O
Interrupt indication to the host processor

Table 2:Application side I/Os

Name
Type
Description

I_itr_a2c_req32
I
When asserted, indicates that the application wants to initiate a transfer with 32 bit data path.

I_itr_a2c_req64
I
When asserted, indicates that the application wishes to initiate a transfer with 64 bit data path.

I_data [63:0]
I
This bus holds the data to be written into a target (in the initiator mode) or data being read out from the current master (in the target mode). Upper 4 bytes are valid only for 64-bit transfers.

I_data_valid_l
I
This signal qualifies the lower four bytes of data on I_data bus.

I_data_valid_h
I
This signal qualifies the upper four bytes of data on I_data bus. This will be asserted only for 64 bit transfers.

I_adrs[63:0]
I
This bus contains the write/write address when the application is initiating a transfer to a target.

I_adrs_valid_l
I
This signal qualifies the lower four bytes of address on I_adrs bus.

I_adrs_valid_h
I
This signal qualifies the upper four bytes of address on I_adrs bus. This will be asserted only when memory transfers requiring 64-bit addressing are being done.

I_cbe[3:0]
I
This is the multiplexed command request type/byte enable for the data on I_data bus for the transfer required. CLPCI does not initiate any configuration commands on other devices on PCI bus.

I_cbe[7:4]
I
This is the byte enable for the upper four bytes of data when 64-bit transfers are being performed.

I_itr_end_transfer
I
This indication indicates that the application wants to end the current transfer it has initiated. This cycle should be asserted during the cycle at the end of which IO_FRAME_n is to be de-asserted.

I_tgt_end_transfer
I
When this signal is asserted, indicates that the application wants to terminate the transactions it is undergoing as a target. This will result in a target abort or disconnect sequence being performed on the PCI bus.

I_itr_rd_nxt
I
When asserted, indicates to the core to place data from the target on the O_data bus. This signal gets asserted in response to O_itr_rd_data_avail indication from the core. The data on O_data will be updated at rising clock edges when this signal is sampled high.

I_tgt_wr_nxt
I
Indicates to the core that the application can accept the data from the core that is written by the current initiator. This signal is asserted in response to O_tgt_wr_data_avail indication from the core. The data on O_data will be updated at rising clock edges when this signal is sampled high.

I_intr
I
When asserted, indicates that the application wishes to send an interrupt to the host processor on the PCI bus.

I_error
I
When asserted, indicates that the application wished to send a system error signal to the host processor on the PCI bus.

O_64bit_mode
O
When asserted, indicates to the application that 64-bit transactions are being carried out as per its request. When the application has requested a 64-bit wide transfer, it has to check this signal to see if it has got a grant for 64-bit wide data path or not.

O_itr_rd_data_avail
O
Indicates that read data from the target is available in the core for transfer to the application.

O_tgt_wr_data_avail
O
Indicates that data written from an initiator is available in the core to be transferred to the application.

O_data[63:0]
O
This bus holds the data for transfer from the core to the application when the application is initiating a read transaction or is being written into in the target mode.

O_data_valid_l
O
When this signal is asserted, indicates that the data on O_data[31:0] is valid.

O_data_valid_h
O
When this signal is asserted, indicates that the data on O_data[63:32] is valid. This will be used only when 64 bit transfers are allowed with the application.

O_adrs[63:0]
O
This bus holds the address to/from which data should be transferred during target mode

O_adrs_valid_l
O
This signal validates the address on O_adrs[31:0] bus.

O_adrs_valid_h
O
This signal validates the address on O_adrs[63:32] bus. This will be asserted only when the application is mapped into memory space requiring 64-bit addressing.

O_cbe[7:0]
O
This contains the byte enables for the data on O_data bus for transfers in target mode. Only the lower nibble is valid with 32 bit transfers.

O_itr_do_wr_transfer
O
Indicates to the application that there is space available for data to be written into the buffer in the core. This signal gets asserted when a write request has been latched from the application and the internal buffer is not full. It gets de-asserted when the transfer is complete or there is no space to be written. The I_data bus should get updated in clock cycles following the edge when this signal is asserted, during the write transfers as initiator.

O_tgt_do_rd_transfer
O
Indicates to the application that there is space available for data to be written into the buffer in the core. This signal gets asserted when the application is in target mode and a read transfer is going on and the internal buffer is not full. It gets de-asserted when the transfer is complete or there is no space to be written.

The core accepts a data from the application when this signal is asserted, and the validity of the data is indicated by the application.

O _disconnect
O
Indicates that disconnect was issued from the target of the current transaction. This is valid only when the application is acting as the initiator.

I_retry_disc
I
The application should indicate to the core that it wishes to retry the transaction disconnected by the target within 2 clock cycles after the O_disconnect signal is asserted by asserting this signal. Otherwise, the transfers will not be completed.

I_issue_tgt_abort
I
This is an indication from the application to the core for a target abort to be issued to the initiator.

O_error
O
Indicates an error condition from the PCI side. A variety of conditions can give this error

Itr_mode
O
This is asserted high when the request from the application has been forwarded to the PCI bus and a grant has been obtained. This indicates that the core is the current master on the PCI bus.

Tgt_mode
O
This is asserted high when the core detects that the transfers are intended for the back end application.

2.3 Functional Blocks

The following are the functional blocks of CLPCI core.

1. Initiator command decoder

2. Initiator engine

3. Target command decoder

4. Target address phase controller

5. Target engine

6. Parity generation and checking block

7. FIFO block

8. Configuration space

2.3.1 Initiator command decoder

This block is responsible for latching the address and command byte I_CBE[3:0] given by the application and to decode it. The command format is kept similar to the PCI commands for simplicity. The address and command are registered at a rising clock edge when one of the two request lines from the application side is asserted. The request type is also registered and will be reset upon the reception of an end of transfer command from the application side.

The following values on I_CBE[3:0] are recognized as valid commands.

0010
: I/O read

0011
: I/O write

0110
: Memory read

0111
: Memory write

1101
: Dual address cycle

Other combinations are considered reserved. If a reserved command is issued from the application side, the core responds to it by asserting the O_error signal for a period of one clock cycle. No transfer of data will be done between the core and the application in response to a reserved command. When a dual address cycle command is decoded, the higher 4 bytes of the address and the normal command are registered in the next clock cycle. The decoded outputs will be used to generate read/write enables to the FIFOs.

Inputs:

I_CBE[3:0], I_itr_a2c_req32, I_itr,a2c_req64 (from application side)

I_RST_n, I_CLK (from PCI side)

Master enable bit (from command register) – acts as decode enable

Outputs:

O_error (to application)

Decoded commands, latched command byte, valid request indicator (to initiator engine)

Latched address (to the data mux)

2.3.2 Initiator Engine

This block is responsible for carrying out the initiator mode transactions. Whenever a valid request is registered, the initiator engine gets activated. In case of initiator requesting write transfers, request is delayed till data is available in the buffer for transfer. Once a request from the application is recognized, initiator engine asserts the O_REQ_n signal requesting the PCI bus arbiter for grant of the bus. The bus arbiter will assert the I_GNT_n signal indicating to CLPCI that it can take the control on the bus once the bus becomes idle. Having got the grant, the initiator engine polls the status of IO_IRDY_n and IO_FRAME_n signals and when it finds that both these signals are de-asserted, it assets the IO_FRAME_n signal indicating the start of transfers from its side. In case the request was for a 64-bit data transfer, it asserts the IO_REQ64 signal as well.

The address from the address latch and the command are placed on the IO_AD and IO_CBE_n buses for one clock cycle. In case of dual address cycle commands, higher four bytes of address and the command are placed on the data bus in the following cycle. At the end of this cycle, it asserts the IO_IRDY_n signal. Wait states are inserted till the addressed target asserts IO_DEVSEL_n and I_O_TRDY_n. In case a valid IO_DEVSEL_n is not found asserted within six PCI clock cycles, a master abort sequence is performed. The engine also looks for the retry indication given by the target (can be issued only in the first data phase). A retry sequence is performed in that case.

If the target responds by asserting IO_TRDY_n and IO_DEVSEL_n signals, the engine goes to data transfer state. If the target is capable of 64 bit wide transfers, it will assert the IO_ACK64_n signal as well. If 64 bit to 64 bit transfers are being performed, the data from the FIFO will be directly used to drive the data and byte enables. If the target has indicated it can take only 32-bit wide data by not asserting IO_ACK64_n signal, the engine splits the transfers into two cycles. A data transfer occurs at any cycle when both IO_IRDY_n and IO_TRDY_n are asserted.

When the engine is in the data transfer state, at each clock edge, it polls for any target initiated or master initiated termination indication and performs a termination sequence if required. The engine also polls the end of transfer indication from the application and if asserted performs a normal termination sequence.

At each valid transfer cycle, the engine decrements the latency timer count for keeping track of any time slice expiration conditions. If the I_GNT_n is found de-asserted at any clock edge during the transfer state, the engine will continue to transfer till the latency timer expires or the application indicated end of transfer, whichever comes first.

2.3.2.1 Write transfers

At each valid data transfer cycle, the initiator engine reads the data and byte enables from the FIFO and drives the values on the PCI bus. It also drives the parity bit in the cycle following the data transfer. In case data becomes unavailable in the FIFO and the end of transaction indication is not reached, the engine inserts wait states by de-asserting IO_TRDY_n.

2.3.2.2 Read transfers

At each valid data transfer cycle, the initiator engine writes the data from the target into the Initiator read FIFO. When no space is available for writing into the FIFO, wait states are introduced by de-asserting IO_IRDY_n. The controller of Initiator read data FIFO will take care of transfer of data to the application from FIFO.

2.3.2.3 Normal termination sequence

When the initiator engine finds that the next data is the last data for transfer, it de-asserts IO_FRAME_n indicating the end of transfer to the target. In case of read transfers end indication is given by the application interface. During write transfers, the end of indication would be written along with the last but one data. The last transfer happens in a cycle when IO_FRAME_N is de-asserted and IO_TRDY_n and IO_IRDY_n are asserted.

2.3.2.4 Time slice expiration sequence

If the timer has expired and the grant is still available, the initiator stays in the transfer state if data for transfer is still available. It can continue to do so till the end of transfer indication or the removal of grant, whichever comes earlier. If grant is de-asserted anytime, engine de-asserts IO_FRAME_n in the next clock cycle to indicate the end of transfers.

2.3.2.5 Master abort sequence

When no target claims a transaction within six PCI clock cycles, the master engine sets the Master abort detected bit in the configuration status register. It will also generate an interrupt indication. IRDY_n and FRAME_n indication from the initiator engine are de-asserted at the end of a Master abort sequence.

2.3.2.6 Target disconnect

A target tells the initiator to end the transfers on the current data phase by asserting the STOP_n signal. Using DEVSEL_n and TRDY_n signals along with STOP_n, the target can indicate three types of disconnects. The initiator engine should disconnect after completing of undergoing data transfer or to disconnect without completion of current data transfer.

When the target indicates disconnect by asserting STOP_n and TRDY_n asserted with DEVSEL_n asserted (Called disconnect A or B depending on the state of IRDY_n), disconnect has to be done on completion of current data phase.

When the target indicates disconnect by asserting STOP_n with de-assertion of TRDY_n (disconnect C) it wants to disconnect the current data phase.

In response to receiving any disconnect indication from the target, the initiator engine asserts the O_disconnect signal. In response to this, if the application asserts I_retry_disconnect signal within four clock cycles the engine tries to perform the data transfer once again. If no such indication is given by the application, the data in the FIFOs due for transfer will be flushed in case of a write transaction. However in case of reads from a target, the data will be transferred to the application and it is left to the application to use or discard the data.

2.3.2.7 Target Retry sequence

When STOP_n and DEVSEL_n asserted but TRDY_n de-asserted during the first data phase, it is a decoded as a retry indication from the target. When a retry is given, the initiator engine repeats the transfer request by using exactly same address, command and byte enables after waiting for two clock cycles.

Master initiated termination: Same as time slice expiration sequence

2.3.2.8 Target abort

A target indicates abort by de-asserting DEVSEL_n and TRDY_n along with assertion of STOP_n. With the reception of this indication the initiator engine stops the current transaction and sets the target abort detected bit in the configuration space.

It also issues an interrupt. It asserts the SERR_n signal if the corresponding enable is turned on in the configuration register.

2.3.2.9 Bus parking support

CLPCI supports bus parking. The bus arbiter can assert the grant even when there is no request from CLPCI. In such cases, it is decoded as a parking request from the arbiter. In response to this, CLPCI starts driving the AD, C_BE lines and the parity output after one clock cycle with valid values. In case there is a request from the application for transfer of data when the bus is parked on CLPCI, it does not have to send a new request. It will start a new transfer by asserting the IO_FRAME_n and driving a proper address and command.

Inputs:

Decoded commands, valid request indicator (from initiator command decoder)

I_RST_n, I_CLK, I_GNT_n, IO_IRDY_n, IO_STOP_n, IO_DEVSEL_n, IO_ACK64_n, (from PCI side)

I_RETRY_disc, I_itr_end_xfer (from application side)

FIFO status from initiator read FIFO and initiator write data FIFO

Outputs:

O_disconnect, O_REQ_n, IO_REQ_64,

Read controls to initiator write data FIFO

Write controls to initiator write data FIFO

Tristate enables to AD bus and parity bits

Inouts:

CBE_n, IO_FRAME_n, IO_TRDY_n

2.3.3 Target command decoder

This block is responsible for decoding the commands put on the PCI bus. Whenever a high to low transition id detected on IO_FRAME_n, thus indicating starting of a new data transfer, the IO_CBE_n[3:0] will be registered and decoded. The following are valid commands.

CBE_n [3:0]

0000
: Interrupt acknowledge (Treated as reserved)

0001
: Special cycle (Treated as reserved)

0010
: I/O read

0011
: I/O write

0100
: Reserved

0101
: Reserved

0110
: Memory read

0111
: Memory write

1000
: Reserved

1001
: Reserved

1010
: Configuration read

1011
: Configuration write

1100
: Memory read multiple (Treated as memory read)

1101
: Dual address cycle

1110
: Memory read line (Treated as memory read)

1111
: Memory write and invalidate (Treated as memory write)

The Target address controller and the target engine will be inactivated if the command is decoded as reserved and no action is taken on them. The memory read multiple and memory read line commands are treated as simple memory read command. Memory write and invalidate command is considered as simple memory write command. Configuration commands are valid only with assertion of IDSEL and AD[1:0] being “00”. When a dual address command is decoded, the normal command corresponding to the dual address cycle will be decoded in the next clock cycle.

Inputs:

I_RST_n, I_CLK, IO_FRAME_n, IO_CBE, I_IDSEL, AD [1:0] (from the PCI bus)

Outputs:

Decoded commands (To target address controller)

2.3.4 Target address controller

This block takes care address decoding and keeping the address pointer updated when the core is acting as a target to PCI cycles.

This block latches the IO_AD bus when the start of a new transfer is indicated by the assertion of IO_FRAME_n signal. After address latching, a comparison is carried out if the address corresponds to any of the address registers in CLPCI’s configuration space. If a match is found, it asserts the IO_DEVSEL_n signal to indicate to the current initiator that an address match has been found. The block also has information whether it can perform 64 bit wide transfers. If a request for 64 bit transfers has been indicated along with IO_FRAME_n, IO_ACK64 will be asserted along with IO_DEVSEL_n. These two signals will remain active till the end of transfers unless there is a target abort signal indication from the Target data phase controller.

When memory commands are being performed, AD[1:0] bits indicate the burst order. They have to be “00” for normal operation of the core in target mode (linear burst ordering). Other combinations will result in a disconnect with data being performed at the first data phase with the assertion of STOP_n and TRDY_n.

This block also takes care of the address incrementing in the target mode. A valid transfer cycle is one when both the IO_IRDY_n and IO_TRDY_n are asserted. . In case there is a dual address cycle, there is an indication from the command decoder indicating so. When 64 bit transfers are taking place, the address is incremented by 8 at each valid transfer cycle. If 32 bit transfers are taking place, the address is incremented by 4 at each valid transfer cycle. This address is presented to the application on the O_data bus when reads are being performed on the target. The address valid bits are also generated depending on the address width. The address is written to a FIFO if writes are being performed on the target.

Inputs:

I_RST_n, I_CLK, IO_FRAME_n, I_IDSEL, IO_AD, I_REQ_64, IO_IRDY (from PCI bus)

Decoded commands from target command decoder

TRDY_n, target abort indication (from target engine)

Target write address FIFO conditions

Outputs:

Valid commands (to target engine)

IO_DEVSEL_n , ACK64_n (to PCI bus)

2.3.5 Target engine

This block will provide the control signals when the core is acting as a target. Whenever the target address controller indicates an address match and asserts device select, this engine takes care of the completing the data transfers.

2.3.5.1 Write Transfers

When writes are being performed, the address, data and the byte enables are written to the respective FIFOs. The address controller takes care of the address incrementing in burst mode. IO_TRDY_n is asserted depending on whether space exists in the FIFOs or not. When some data is available in the FIFO, the FIFO controller has to take care of performing writes onto the application interface.

2.3.5.2 Read Transfers

When reads are being performed on the target, address controller places the target address on the O_adrs bus. When data is available in the Target read data FIFO, the engine takes the data from the FIFO and drives the AD bus with that value, and asserts IO_TRDY_n on the to indicate the validity of data.

2.3.5.3 Target disconnect

The target engine issues a disconnect when the transfer crosses its address boundary or when the AD[1:0] has ‘01’ or ‘11’ pattern with a memory command (which is a reserved pattern). Disconnect of A, B, C types can be allowed.

Disconnect A, B: Done during the first data phase. The target engine indicates disconnect by asserting STOP_n and TRDY_n asserted with DEVSEL_n asserted (Called disconnect A or B depending on the state of IRDY_n), disconnect has to be done on completion of current data phase.

Disconnect C: Done during the second data phase. The target engine indicates disconnect by asserting STOP_n with de-assertion of TRDY_n (disconnect C) it wants to disconnect the current data phase.

2.3.5.4 Target abort

The target engine signals a target abort by asserting IO_STOP_n and de-asserting IO_TRDY and IO_DEVSEL when there is a fatal error. The causes for fatal error are address parity error or the assertion of I_issue_tgt_abort signal from the application.

2.3.5.5 Target retry

Since locking is not supported, it is to be decided under what conditions does CLPCI issues a retry. It may be unnecessary for CLPCI to issue retry as a target.

Inputs:

Valid commands (form target address controller)

Target write FIFO status (from FIFO block)

I_issue_tgt_abort (from application)

Outputs:

IO_TRDY_n, IO_STOP (to PCI bus)

Address valid signals, Target mode (to application side)

Target write FIFO controls

Abort indication (to address controller) for DEVSEL de-assertion.

2.3.6 Parity generation and checking block

The PCI bus is parity protected both during the address and data phases of a transaction. A single bit PAR protects AD[31:0] and C_BE_n[3:0]. In case of 64 bit data transfers the PAR64 bit protects AD[63:32] and C_BE_n[7:3]. The PCI device driving the AD bus during an address phase or a data phase should calculate the parity bit and drive it on the PAR bit in the next clock cycle. The parity bit is received at the destination and will be compared with internally generated parity. If there is a mismatch between the expected parity and the received parity the PERR signal is flagged.

There are 4 modes of operation of the parity block.

1. CLPCI as initiator performing write cycles: In this case it calculates the parity bit and drives in the next cycle of placing the address or data. It also looks for the PERR signal being driven by the target two cycles after the data was sent. In case of an error indication, it sets the Data parity error reported bit in the PCI configuration status register.

2. CLPCI as initiator performing read cycles: In this case it drives the parity bit only for the address cycle. Then it is the target that supplies the data as well as parity. The core computes parity on the received data and compares with the received parity in the next cycle. If there is a mismatch, it sets the Parity error detected bit in the PCI configuration register. If the Parity error response bit in the PCI configuration register is ‘1’, it asserts the PERR_n signal and sets the Parity error reported in the configuration register.

3. CLPCI as target for write cycles: Here the core computes the address and data parity on all valid cycles. It compares with the received parity bit in the next clock cycle. If there is a mismatch, it sets the detected parity error bit in the configuration register. If the parity error response bit is ‘1’, it asserts PERR and also sets the parity error reported bit. If address parity errors are detected in this mode, the SERR signal is asserted, if SERR enable bit is set in the configuration register.

4. CLPCI as target for read cycles: Here the core computes the parity on AD bus and drives it in the following clock cycle. If address parity errors are detected in this mode, the SERR signal is asserted, if SERR enable bit is set in the configuration register.

Inputs:

Data from PCI, Data to PCI, IO_PERR, Register bits from configuration registers

Outputs:

IO_PERR, PAR64 (to PCI bus)

2.3.7 FIFO block

This block is a collection of parameterizable FIFOs that are used to support burst mode of operation on the PCI bus. Each of the following FIFO has a capacity of sixteen double words.

2.3.7.1 Initiator write data FIFO

Whenever the application wishes to make a write transfer to some target on the PCI bus, it asserts the request line (I_itr_a2c_req32 or I_itr_arc_req64) indicating the data width for transfers, for one clock cycle. During the same clock cycle, it drives the address on I_adrs pins. The I_adrs_valid_l and I_adrs_valid_h signals are also asserted appropriately. The command on the I_cbe is decoded in the command decoder and the address is latched in an address latch.

If the command were a write transaction, data would be written into the data FIFO from the following cycle. Whenever there is some data in the data FIFO, it would indicate to the initiator engine that the data has to be transferred on to the PCI bus. Byte enables are also written into the FIFO as an extension of data. The application indicates the end of a burst by asserting I_itr_end_transfer signal. This signal is also written as a bit in the FIFO such that the initiator engine can detect the end of a transfer.

Inputs:

I_CLK (from PCI bus)

Write enable (from initiator engine)

I_data, I_data_valid_l, I_data_valid_h, I_CBE, I_itr_end_transfer (from application side)

Outputs:

Data present (to initiator engine)

O_itr_do_wr_transfer (to application)

Data & CBE to PCI bus

2.3.7.2 Initiator read data FIFO

When the application is acting as the initiator and performing read transactions, the data given out by the target is written into this FIFO. When there is no space available in the FIFO, wait cycles are inserted by de-asserting IO_IRDY_n. When data read from the target is available in the FIFO, the controller takes care of transferring it to the application.

Inputs:

Data from PCI bus

I_CLK (from PCI side)

Outputs:

O_Data, O_itr_rd_data_vaial,O_data_valid_h, O_data_valid_l (to application)

2.3.7.3 Target Read data FIFO

Whenever the application is the target of a read transaction, the target address controller gives the read address and read command to the application. The data read is written into this FIFO. When data is available in this FIFO, it is read out and driven on the PCI bus. When data is not available, the target engine inserts wait cycles by keeping IO_TRDY_n signal de-asserted.

Inputs:

I_Data, I_data_valid_l, I_data_valid_h, I_tgt_end_transfer (from application)

FIFO read enable (from target engine)

Outputs:

O_tgt_do_read_transfer (to application), Data to PCI bus

FIFO status to target engine

2.3.7.4 Target write data FIFO

When the application is the target for a write transaction, the data, along with byte enables written out by the initiator is written into this FIFO. When there is no space in the FIFO, the target engine inserts waits states by keeping IO_TRDY_n signal de-asserted. When data is present in the FIFO, the FIFO controller takes care of transferring it to the application.

Inputs:

I_tgt_wr_nxt, I_tgt_end_transfer(from application)

Data from PCI bus

FIFO write enable (from target engine)

Outputs:

O_tgt_wr_data_avail , O_Data, O_data_valid_l, O_data_valid_h (to application)

FIFO status to target engine

2.3.7.5 Target write address FIFO

When the application is the target for a write transaction, the target address provided by the target address controller is written into this FIFO. The address and the corresponding data and byte enables are presented to the application together.

Inputs:

I_tgt_wr_nxt, I_tgt_end_transfer(from application)

Address from target address controller

FIFO write enable (from target engine)

Outputs:

O_Addr, O_Addr_valid_l, O_addr_valid_h (to application)

FIFO status to target engine

2.3.8 Configuration Header Space Registers

CLPCI implements all mandatory header type zero PCI configuration registers and some of the optional registers in the configuration header space. These configuration registers must be initialized at startup time to configure the core to respond to the memory or I/O address ranges assigned by the configuration software executed by the host processor. Type zero configuration header space is implemented. Read only registers are indicated as R/O. Registers that can be written are indicated as R/W. Any writes to a configuration register that is read only or not implemented will be discarded even though the access is completed normally. Any reads to unimplemented registers are completed normally returning a data value of 0.

CLPCI is selected for configuration transactions if I_IDSEL is high and IO_AD[1:0] are ‘00’ indicating a type zero configuration transaction. The address of the register is given by IO_AD[7:2]. AD[10:8] must be ‘000’ since CLPCI is a single function PCI device. Other address bits are don’t cares.

2.3.8.1 Device Identification Register

This register contains the device id and vendor id values [R/O]

Address 00h

Bit
Type
Default
Function

15:0
R/O
All 0s
Device ID – set to zeros

31:16
R/O
All 0s
Vendor ID– set to zeros

It is yet to be verified if different device and vendor IDs have to be given

2.3.8.2 Status & Command Register

Address 04h

Higher two bytes form the status register. Lower two bytes form the command register. When a one is written to any of the bits, that bit gets cleared.

Status Register

Bit
Type
Default
Function

3:0
R/O
0000
Reserved – set to zeros.

4
R/O
0
Capabilities linked list of PCI v2.2 not implemented.

5
R/O
1
66 MHz capability – The core supports 66 MHz PCI.

6
R/O
0
Reserved.

7
R/O
0
Fast back-to-back capable – set to zero as the core supports fast back-to-back transactions with the same target only.

8
R/W
0
Data parity reported. – This is implemented as the core is in master mode. This bit is set if the core was acting as an initiator and set the bit due to a parity error on read, or detected it asserted by the target during write. This bit is enabled only if the Parity error response bit in the command register is set to a one.

10:9
R/O
10
Device select timing – indicates a slow decode device when acting as a target.

11
R/W
0
Signaled target abort – set by the core when in target mode and a target abort occurs.

12
R/W
0
Received target abort – set by the core in initiator mode after experiencing a target abort.

13
R/W
0
Issued Master abort – This bit is set when the core is in master mode and a master abort occurs.

14
R/W
0
Signaled System error – asserted when a SERR is generated.

15
R/W
0
Detected parity error – This bit is set when the core detects a parity error. This indication has to be set even if parity error reporting is disabled by bit 6 in command register.

Command Register

Bit
Type
Default
Function

0
R/W
0
I/O space enable - When this bit is set to a one, the device can respond to I/O accesses.

1
R/W
0
Memory space enable – When this bit is set to a one, the device can respond to memory accesses.

2
R/W
0
Master enable – when this bit is set to a one, the device can act as a master. Zero makes it to act as a target only device.

3
R/O
0
Special cycle enable -The core does not respond to special cycles.

4
R/O
0
Memory write and invalidate –This command is not supported and the bit is set to a zero.

5
R/O
0
VGA palette snoop enable – The core assumes a non-VGA application and this bit is set to a zero.

6
R/W
0
Parity error response – When set to a one, the core reports parity errors. When zero, ignores parity errors.

7
R/O
0
Stepping enable – The core can decode stepped address or data as a target, but does not give transfer stepped data as an initiator.

8
R/W
0
System error enable – When set to a one, the core can drive SERR line. When zero the driver for SERR pin stays disabled.

9
R/O
0
Fast back to back enable – The core supports back to back transactions to the same target only.

15:10
R/O
000000
Reserved

2.3.8.3 Class code and revision id register

This register contains the revision id and class code values.

Address 08h

Bit
Type
Default
Function

7:0
R/O
All 0s
Revision ID – set to zeros

31:8
R/O
FF0000h
Class code– FF0000

It has to be verified if this coding is correct for CLPCI core.

2.3.8.4 Header Type and Latency timer register

Address 0Ch

Bit
Type
Default
Function

7:0
R/O
All 0s
Cache line size not implemented

10:8
R/O
All 0s
Lower 3 bits for latency timer always 0.

15:8
R/W
00001
Higher 5 bits for Latency Timer

23:16
R/O
00h
Header Type zero for a single function device

31:24
R/O
All 0s
BIST not implemented

The default value of latency timer allows bursts lasting to eight PCI cycles. The configuration value may write a higher value.

2.3.8.5 Base Address Register 0 – Low word

This address indicates the memory base address for the device. Since CLPCI supports 64 bit addressing, this register occupies 2 consecutive locations in the configuration address space.

Address 10h
Bit
Type
Default
Function

0
R/O
0
Indicates it is a memory base address

2:1
R/O
10
Indicates that the base register is 64-bit wide and can be mapped anywhere in 64-bit address space

3
R/O
0
Indicates that the memory does not support pre-fetching

32:4
R/W
All 0s
Base address

2.3.8.6 Base Address Register 0 – High word

This address indicates the memory base address for the device. Since CLPCI supports 64 bit addressing, this register occupies 2 consecutive locations in the configuration address space.

Address 14h
Bit
Type
Default
Function

31:0
R/W
All 0s
Upper 4 bytes of memory base address.

2.3.8.7 Base address Register 1

This address indicates the I/O base address for the device. A Maximum of 256 locations is allotted to a device as I/O.

Address 18h
Bit
Type
Default
Function

0
R/O
1
Indicates it is a I/O base address

1
R/O
0
Reserved

31:2
R/W
All 0s
Base address

2.3.8.8 Interrupt register

Address 3Ch.

Bit
Type
Default
Function

7:0
R/W
00h
Interrupt line register - This indicates the interrupt routing information written by the configuring software. This shows to which input of system interrupt controller the interrupt pin of the device is connected. However, the core does not use the value in the register for any operation.

15:8
R/O
01h
Interrupt pin registers – indicates that the interrupt from the device is connected to INTA pin.

32:16
R/0
All 0s
MIN_GNT and MAX_LAT not implemented

3 AC and DC Specifications

3.1 Recommended Operating Conditions

.

3.2 DC Specifications

3.3 Timing Specifications

3.4 Power Consumption

4 Programming Operations

5 Test

5.1 Requirements

The core needs to be tested for its support of features as well as PCI specification compliance. Running directed tests for the feature set supported by CLPCI does the first part. Running a much more elaborate PCI test suite can do the second part. At this point of time it is not decided if such a strategy will be employed for validating PCI conformance.

Once the basic functionality is tested, it will be a good idea to make two instances of the core, one as the initiator and the other as target and run the data transfer tests.

5.2 Verification Plan

This section summarizes the set of directed tests to be run on CLPCI core.

5.2.1 Initiator mode tests

The test bench acts like a pseudo target. It asserts the target signals on the PCI bus. However it is not a complete PCI bus functional model.

1. Bus parking:

Test bench issues GNT to the core in the absence of a request. The values of AD & CBE are checked after 2 cycles. PAR and PAR64 will be checked one cycle later.

2. Single phase read/write Transfers

Test bench issues a single-phase transfer request on the application side. Test bench also emulates the behavior of target by asserting the DEVSEL and IRDY. The transactions will be verified by watching the waveforms and monitoring the data in the test bench.

3. Multi phase read/write Transfers

Test bench issues a multi-phase transfer request on the application side. Test bench also emulates the behavior of target by asserting the DEVSEL and IRDY. The transactions will be verified by watching the waveforms and monitoring the data at the test bench. This test can be run at a later time by making one instance of the core as target and one as the initiator.

4. Multi phase data transfers with IRDY de-assertion in between

Test bench issues a multi phase write transfer. While the transfer is going on, the test bench stops writing into to core for a while before making an end of transfer indication. This creates a buffer empty condition resulting in de-assertion of IRDY.

5. Multi phase data transfers with TRDY de-assertion in between

Test bench issues a multi phase write transfer. While the transfer is going on, the test bench takes off the TRDY indication for a few cycles. The effect of this on the ongoing transfers is observed on waveforms.

6. Multi phase data transfers with IRDY and TRDY de-assertion in between

This is a combination or 6 & 7.

7. Proper completion of transfers when GNT is de-asserted at the same time as frame being asserted

Test bench requests a multi data phase write transfer from the application interface. It gives a GNT to the request on PCI interface, but takes it at the same cycle when FRAME is asserted. The test bench emulates target behavior by asserting DEVSEL and TRDY indications. The transactions on PCI bus are watched on waveforms for proper completion of the transfers.

8. Proper completion of a transfer with target disconnect A sequence

Test bench initiates a multi data phase transfer from the application interface. When the transfers are going on, it indicates a disconnect A on the PCI bus signals. The response of the core in the following cycles is checked.

9. Proper completion of a transfer with target disconnect B sequence

Similar to 8

10. Proper completion of a transfer with target disconnect C sequence

Similar to 8

11. Proper completion of a transfer with target retry and the transfer repeated

Test bench initiates a transfer by indicating a request from the application interface. It also issues a retry indication on the PCI interface. The response can be watched on the waveforms as well as monitoring the data in the test bench.

12. Proper completion of a transfer with target abort sequence

Test bench starts a transfer by placing a request from the application side. Once the request is issued on the PCI bus, it issues a target abort indication. The response will be watched by waveforms as well as monitoring data in the test bench.

13. Detection of parity error with target reads and proper register bit setting

Initially the core is configured to detect and report parity errors by writing into the registers. Then the test bench issues a read request from the application interface. Core puts this request on the bus and gets grant. The test bench supplies the read data and parity. Error is introduced in the parity bit and the response of the core will be watched.

14.Sending proper parity bit & detection of PERR when the parity error is introduced by the initiator itself

The core is configured to detect and report parity errors. Transfers are initiated by asserting a request form the application side. Test bench asserts PERR deliberately. The response of the core will be watched on waveforms.

15. Normal transfer termination (may not need a special test)

16. Initiator preemption with timer expiry

Test bench initiates a transfer by asserting the application request and continues to provide data even after the expiry of its time slice. However, it removes the GNT. The core has to stop the transfers and indicate it to the application interface. (Indication to be defined)

17. Initiator preemption when GNT is removed before timer expiry

Similar to 16. Test bench removed GNT even before the time slice has expired The core has to continue with transfers, till its timer expires and then stop. Watch on waveforms.

18. GNT still asserted after time slice expired, there is still data for transfer

Test bench initiates PCI transfer cycles by asserting the request from the application interface. It keeps GNT asserted even beyond the default time slice. It pumps in data from the application interface beyond the time slice. The transfers should complete normally.

19. Master abort when DEVSEL is not asserted within 6 clock cycles

The test bench generates a valid request on the application interface. However, no grant is issued to the core till after 6 clock cycles. The IO_FRAME and IRDY signals and the configuration register bit corresponding to this condition is read to verify if it has been proper

20. Assertion of application request when the bus is parked on the core.

Bus parking sequence is done as in test 1. Test bench puts a request for transfer on the application interface while the grant is already available. The completion of transfers is watched on waveforms.

5.2.2 Data transfer tests

The following set is to be repeated for both reads and writes, with the core being the initiator as well as target (Total 24 tests)

1. 32 bit initiator to 32 bit target transfers

2. 32 bit initiator to 64 bit target transfers in dual address mode

3. 64 bit initiator to 64 bit data target transfers

4. 64 bit initiator to 64 bit target transfers

5. 32-bit initiator to 32-bit target transfer, but address path is 64 bits

6. 64-bit initiator to 64 bit target transfers, but address path is 32 bits

5.2.3 Target mode tests

The test bench emulates an initiator during target mode tests. It is not a complete bus functional model but give the signals for the core to work properly in the target mode.

1. Target for configuration transfer

Test bench performs configuration cycles. All the registers will be read and all the writeable registers are written and read back. This will serve as a test for verifying the configuration space block also.

2. Address selection and rejection

Test bench configures the base address registers of the core. It then puts invalid addresses on the PCI bus issuing valid commands. Test bench looks for DEVSEL indication from the core. DEVSEL should not appear even after sic clock cycles. This validates address rejection. Next valid addresses are given and it is checked if the DEVSEL is asserted within six clock cycles.

3. Target for special cycles(special cycles to be rejected)

Test bench puts a special cycle command (and any other reserved commands) and a valid target address. Since the command is a special cycle, the target should not respond with DEVSEL even though there is an address match.

4. Target for address stepping transfers

This does not need any test case. The target, by design would look at only the FRAME signal for the indication of a new address phase and does not care if the grant for the current initiators was given much before and the initiator did address stepping.

5. Single data phase transfers

The test bench does a single data transfer by performing valid address phase and a single data phases. It can write to a location and read it back to check the validity of the current transfer.

6. Muti phase data transfers

The test bench does a data transfer by performing proper address and data phases.

It writes to a location in the target memory space and reads it back to check the validity of the current transfer.

7. Target for data stepping transfers

The test bench does a write transaction on the core. The data is stepped while keeping IRDY de-asserted. A bunch of data is written with IRDY de-assertions and data stepping. A read is done to the same locations and the data is matched in the test bench.

8. Issue of target abort

The test bench starts transfer to the core. It issues an issue_target_abort indication from the application side. It checks the values of DEVSEL, STOP and TRDY in the following few cycles to verify if a target abort indication was indicated on these signals. Then it does a configuration transaction to read the register bit corresponding to issue of target abort.

9. Issue of disconnect sequences

The test bench starts a write transfer to the core. While the transfers are going on, it asserts I_tgt_end_transfer signal indicating a disconnect request. The target takes this request and issues a disconnect on the PCI bus. Depending on the then current condition of IRDY,TRDY and DEVSEL, it could be a A,B or C type of disconnect.

10. IRDY and TRDY de-assertion in between a multi data phase transfer

The test bench delays responding on the application interface during a multi phase write transfer thus making the core de-assert TRDY. The test bench also de-asserts IRDY (which is under its control) in between. After the completion of the writes, the burst read is performed to the same address and the data integrity is checked in the test bench.

11. Back to back transfers with the from initiator when the GNT for initiator is available

The test bench does two consecutive write transfers on the bus. Then it checks the data validity by reading the data back.

12. Parity error detection with initiator writes and PERR indication to initiator with the register settings

Test bench makes a configuration transfer to enable the PERR indication. Then it starts a valid write transfers to the core. After a few correct parity transfers, it inserts an error in the parity bit. Then it monitors the PERR pin to see if the core is flagging the error after two clock cycles. Then it reads the status register to see if the corresponding bits are set.

13. Address parity error detection and generation of SERR

The test bench makes a configuration write to the core to enable the issue of SERR indication. Then it starts a valid write transfer for the core to be in target mode. After a few transfers, it inserts an error in the address parity for one cycle. It checks for the assertion of the SERR signal. After finding that high, it makes another configuration transaction to check if the signaled system error bit has been set in the status register.

5.2.4 Error conditions

1. Passing of interrupt from application side to the bus

The test bench assets the interrupt request from the application side and the INTR pin of the core is watched.

2. Interrupts because of target abort

3. Interrupts with master abort

Check of the above conditions need to generate interrupts

4. Interrupts due to other error conditions

5. Issue of SERR

6 I/O Assignment

7 Internal Technical Analysis

8 Risks And Counter Measures

9 Manufacturing Requirements

10 Tools Used

11 Vendor Parameters

Vendor Name

Package type

Operating Frequency

Core Voltage

Periphery Voltage

Total Available Gates

Internal memory type

Internal memory organization

12 Appendix A:

PAGE
ii
Revision 1.0
Chiplogic Company Confidential

